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MA 506 Probability and Statistical
Inference

Lecture 16: Ridge Regression
In [1]:

1. Remember Linear Regression..
When we discussed linear regression, we discussed Ordinary Least Squares (OLS)
formulation resulting from minimizing Mean Squared Error (MSE)

which resulted in

which is referred to as the unbiased estimator because

The estimate  is called Best Linear Unbiased Estimator (BLUE) of . Here each of
the terms represent the following:

Best: Obtained after minimizing MSE
Linear: Obtained from a Linear model

Unbiased: Because 
Estimator: As it estimates 
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import numpy as np
import matplotlib.pyplot as plt
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2. Ridge Regression
1. In Ridge Regression, we trade-off unbiasedness for even lesser variance
2. Problem happens because of co-linearity of features. If two features are highly

correlated, the estimator  might vary a lot with different samples (high variance)

3. Hence, with correlated features, OLS estimate  has a high variance (changes a lot
with different samples/training data).

4. Ridge Regression is a way to reduce this variance so that estimate:  is stable and
hence generalizes well to unseen data.

Hence, in ridge regression we give away unbiasedness for smaller variance and better
generalization
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2.1 Ridge Regression formulation

The unstable nature of  results from it containing very large values for some samples
which can drastically change the regression function. So, ridge regression constrains the
values the estimate of  can have. Hence in Ridge Regression we solve the optimization
problem:

Hence, if we are fitting a straight line model: , then the relationship between
the optimal OLS estimate and Ridge estimate looks something as follows:
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Here the blue circle represents the set of all values of  that satisfy: .

As shown in the figure above, the OLS estimate ( ) doesnt lie in the blue region so its
not acceptable. Hence we keep on moving away from the OLS estimate and the first solution
that lie in the blue regions is then chosen as the solution for Ridge Regression. This is
because this solutions minimizes MSE as much as possible while satisfying .
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2.2 Method of Lagrangian multiplier to obtain 

We start with the following penalty based formulation for ridge regression (converting
constrained to unconstrained optimization)

i.e. for a given  and , we want to solve the following optimization problem

Differentiating the above expression with respect to  and putting it to 0

Hence,
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Things to note

1. When  then 

2. When  then 
3. A finite non-zero  removes the problem of collinearity of features and makes the

algorithm more stable
4. It can be proved that if  is full rank, then 
5. Ridge Regression is sometimes called Regularized Regression with  penalty
6. Ridge Regression is mathematically equivalent to Probabilistic Regression with gaussian

prior probability of : , and gaussian likelihood of data: 
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Getting data

In [2]:

Fitting multiple models to this data

1. Linear Regression: 
2. Ridge Regression with the same features: 
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np.random.seed(0)
x = np.linspace(0.001,6.14,100)
y = np.sin(x) + np.log(x)
err = np.random.randn(len(x))
y_noisy = y+err
plt.scatter(x,y_noisy)
plt.show()

def poly_power(x,n):
    X = []
    for i in x:
        temp = []
        for j in range(n+1):
            temp.append(i**j)
                
        X.append(temp)
    return np.array(X)

X = poly_power(x,7)
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plotting the regression plots

In [7]:

Exercise

1. Varying  from 0 to 100, visualize how the 8  values will look like. Hence, in essence
plot 8 curves in a  vs  plot.\

2. Comment on the behavior of the plot.
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beta_ols = np.linalg.inv(X.T.dot(X)).dot(X.T.dot(y_noisy))
xpred = np.linspace(0,6.14,200)
Xp = poly_power(xpred,n = 7)
yp_ols = Xp.dot(beta_ols)

 

lambda1 = 0.001
n = len(y_noisy)
beta_ridge = np.linalg.inv(X.T.dot(X) + n*lambda1*np.eye(X.shape[1])).
yp_ridge = Xp.dot(beta_ridge)

plt.plot(xpred,yp_ols,label = 'Linear Regression')
plt.plot(xpred,yp_ridge,label = 'Ridge Regression')
plt.scatter(x,y_noisy)
plt.legend()
plt.show()
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