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In [1]:

MA 506 Probability and Statistical
Inference

Lecture 16: Ridge Regression

import numpy as np
import matplotlib.pyplot as plt

1. Remember Linear Regression..

When we discussed linear regression, we discussed Ordinary Least Squares (OLS)
formulation resulting from minimizing Mean Squared Error (MSE)

1
min MSE = min —||Y — Xp||5
B g n

which resulted in

~OLS
g =xTx)y ' xTy

which is referred to as the unbiased estimator because

B 1= (XTX) XTEY] = (XTX) ' XTXp =

10/5/22, 3:40 PM

~OLS
The estimate f is called Best Linear Unbiased Estimator (BLUE) of /. Here each of

the terms represent the following:
e Best: Obtained after minimizing MSE
e Linear: Obtained from a Linear model

AOLS
e Unbiased: Because E[f ]| =p
o Estimator: As it estimates [
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2. Ridge Regression

1. In Ridge Regression, we trade-off unbiasedness for even lesser variance
2. Problem happens because of co-linearity of features. If two features are highly
correlated, the estimator f might vary a lot with different samples (high variance)

~OLS
3. Hence, with correlated features, OLS estimate has a high variance (changes a lot
with different samples/training data).

~rid

ge
4. Ridge Regression is a way to reduce this variance so that estimate: f is stable and
hence generalizes well to unseen data.

Hence, in ridge regression we give away unbiasedness for smaller variance and better
generalization

~ridge

E[p 1# 5
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2.1 Ridge Regression formulation

The unstable nature of /§ ors results from it containing very large values for some samples
which can drastically change the regression function. So, ridge regression constrains the
values the estimate of f# can have. Hence in Ridge Regression we solve the optimization
problem:

1
min —||Y — Xp||3, such that ||f]|3 < ¢ (1)
g n

Hence, if we are fitting a straight line model: y = f; + f, x, then the relationship between
the optimal OLS estimate and Ridge estimate looks something as follows:

_ OLS estimate

Ridge
estimate ™

By

B

Here the blue circle represents the set of all values of § = [ ] that satisfy: ||f]|3 < ¢2.

2

~OLS
As shown in the figure above, the OLS estimate (f ) doesnt lie in the blue region so its
not acceptable. Hence we keep on moving away from the OLS estimate and the first solution
that lie in the blue regions is then chosen as the solution for Ridge Regression. This is

because this solutions minimizes MSE as much as possible while satisfying ||f]|3 < ¢?.
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2.2dMethod of Lagrangian multiplier to obtain
~ridge

p

We start with the following penalty based formulation for ridge regression (converting
constrained to unconstrained optimization)

1
F(B,2) = —IIY = XBl5 + (18115 = ¢*)

i.e. for a given A and ¢, we want to solve the following optimization problem
. l Y — X812 + 2 2 _ 2
min | 1Y = XAII3 + AUIAII3 - )

Differentiating the above expression with respect to £ and putting it to 0

O Ty naT T Ty T O oTp
aﬁ(Y Y — 28" XTXp+ fTX Xﬁ>+n,10ﬁ(ﬁ £ =0

ge

ge ~rid,
+ni28 TH)=0

~rid
= 0-2XTY +2XTXxp

~ridge ~ridge

— X'Xp ~ +nip = =XTY
Hence,
~ridge T 1T
p =X'X+nAD)'X"'Y

Things to note

~ridge ~OLS
1. When A — 0 then - f

~ridge
2. When A — oo then f§ -0

3. A finite non-zero A removes the problem of collinearity of features and makes the
algorithm more stable

4. It can be proved that if X7 X is full rank, then Aoptimal > 0

5. Ridge Regression is sometimes called Regularized Regression with L, penalty

6. Ridge Regression is mathematically equivalent to Probabilistic Regression with gaussian
prior probability of f: f ~ N(0, 72 1), and gaussian likelihood of data:
Y ~ N(XB,o%1)
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In [2]:

In [3]:

In [4]:

Getting data

np.random.seed(0)

X = np.linspace(0.001,6.14,100)
y = np.sin(x) + np.log(x)

err = np.random.randn(len(x))
y_noisy = y+err
plt.scatter(x,y_noisy)

plt.show()
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Fitting multiple models to this data

10/5/22, 3:40 PM

1. Linear Regression: y = fy + f1x + o x> + 3 x> + fux* + fsx° + fex® + pr X7

2. Ridge Regression with the same features: [1, x, x

def poly_power(x,n):

X =[]
for i in x:
temp = []

for j in range(n+1):
temp.append(ik*j)

X.append(temp)
return np.array(X)

X = poly_power(x,7)
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In [5]: beta_ols = np.linalg.inv(X.T.dot(X)).dot(X.T.dot(y_noisy))
xpred = np.linspace(0,6.14,200)
Xp = poly_power(xpred,n = 7)
yp_ols = Xp.dot(beta_ols)

In [ ]:

In [6]: lambdal = 0.001
n = len(y_noisy)
beta_ridge = np.linalg.inv(X.T.dot(X) + nxlambdalknp.eye(X.shape[1])).
yp_ridge = Xp.dot(beta_ridge)

plotting the regression plots

In [7]: plt.plot(xpred,yp_ols,label = 'Linear Regression')
plt.plot(xpred,yp_ridge, label = 'Ridge Regression')
plt.scatter(x,y_noisy)
plt.legend()

plt.show()
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Exercise

1. Varying A from 0 to 100, visualize how the 8 f values will look like. Hence, in essence
plot 8 curves in a ff vs A plot.\
2. Comment on the behavior of the plot.
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